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Abstract

Change-point problems arise when di/erent subsequences of a data series follow di/erent statisti-
cal distributions – commonly of the same functional form but having di/erent parameters. This pa-
per develops an exact approach for 3nding maximum likelihood estimates of the change points and
within-segment parameters when the functional form is within the general exponential family. The al-
gorithm, a dynamic program, has execution time only linear in the number of segments and quadratic
in the number of potential change points. The details are worked out for the normal, gamma, Poisson
and binomial distributions. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The change-point model is appropriate for some data sets with a natural ordering.
This model is that the sequence of data can be broken down into segments with the
observations following the same statistical model within each segment, but di/erent
models in di/erent segments. One example of a change-point model is that in which
the data follow a common distributional form (for example normal) whose parameters
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(mean, variance or both) change from one segment to another. Another more complex
model is the discontinuous segmented regression model in which the observations
in each segment follow a linear regression, but the parameter(s) of this regression
(slopes and=or intercept) change from one segment to the next.

Change-point models involve three issues – the choice of suitable parametric forms
for the within-segment models; the choice of segment boundaries, or change-points,
and the determination of the appropriate number of change-points to use in mod-
eling the speci3c data set. Our discussion focuses on the second of these ques-
tions. The third question is outside the scope of this article but will be commented
upon.

The best-known application of change-point modeling in data analysis is that of
regression trees. In the most widely used implementation (Breiman et al., 1984),
the data set is ordered by a continuous or ordinal predictor and then split into two
subsequences – those cases whose predictor value falls below some change-point and
those whose predictor value is above the change-point. The change-point is chosen
to maximize the separation between the two subsequences. The same binary splitting
algorithm is then applied to each of the subsequences, and repeated recursively until
the subsequences can no longer be usefully subdivided. This is a “greedy” algorithm –
it seeks to select each change-point to maximize an immediate return. As is generally
the case with greedy algorithms (and as we shall see later by example) this hierarchic
binary splitting, though fast, usually fails to give the optimum splits if there are two
or more of them.

In this paper, we provide an exact and reasonably fast algorithm for performing
a multiway split. We will do this, not only for the case of a normal mean (as used
in regression trees) but for an arbitrary parameter in an exponential family model.

In the following sections, we will derive the likelihood equations for optimal
multiway splitting of data following an exponential-family distribution. Showing that
this satis3es Bellman’s ‘Principle of Optimality’ it then follows that the optimal splits
can be found with a dynamic programming algorithm. Finally, we will work out the
details for a number of common data modeling distributions and illustrate them with
actual data sets.

1.1. The exponential family

The exponential family provides a rich set of models for data. Familiar members
of the family are the normal distribution, the exponential, the gamma, the binomial
and the Poisson. The family also includes normal-error linear regression and some
generalized linear models. Starting with the simpler (non-regression) models, the
canonical form of the exponential family distribution or density function is

f(x; �) = exp[ − �′x+ c(x) + d(�)]: (1)

The parameter � and data X may be either scalar or vector-valued. If vectors, they
must be of the same dimension. Given a random sample of size n, X1;X2; : : : ;Xn,
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all mutually independent, the suMcient statistic for � is

S =
n∑

i=1

Xi : (2)

This statistic is the maximum likelihood estimator (MLE) of the parametric func-
tion nd′(�), for which it is unbiased. Solving the equation d′(�̂) = S=n gives the
MLE of �. Substituting this back into the likelihood gives the maximized
likelihood.

2. The change-point model

Now extend the formulation to the change-point model. In this model, there are a
number of change points, 	1; 	2; : : : ; 	k−1 such that the observations Xi with 	j−1 ¡i ≤
	j follow the particular exponential family model with parameter �j: In other words,
the distributional form remains the same for all segments, but the parameter changes
whenever one crosses over one of the change points 	j.

As there are k − 1 change-points, there are a total of k segments in this model.
To simplify notation, we will augment these change-points with 	0 = 0, a notional
changepoint to the left of the entire sequence, and 	k = n, a notional changepoint to
the right of the sequence. The log likelihood of the data is then given by

L(X ; �; 	) =
k∑

j=1

	j∑
i=	j−1+1

[ − �′jXi + c(Xi) + d(�j)]: (3)

2.1. Maximum likelihood estimation of the parameters

The maximum likelihood estimators (MLEs) of the parameters 	j; �j are found by
maximizing the log likelihood (3). This can logically be separated into two stages;
given the changepoints 	j, the �j maximize the within-segment likelihood. Thus the
maximization consists of the “outer” problem of 3nding the MLE’s 	̂j of the 	j with
the “inner” problem of 3nding the �̂j given the 	̂j:

For arbitrary 0¡h¡m ≤ n; write S(h; m)=
∑m

i=h+1 Xi : If the sequence Xh+1; : : : ;Xm

follows the model distribution with a parameter value �, S(h; m) is the suMcient
statistic for � using Xh+1; : : : ;Xm: Write Q(h; m) for −2 times the maximized log
likelihood obtained by substituting �̂ for � in the log likelihood of this subsequence
of the data. This will be

Q(h; m) = −2[�̂
′
S(h; m) − (m− h)d(�̂)] − 2

m∑
i=h+1

c(Xi): (4)

When looking at the likelihood of the whole sequence, the
∑

c(Xi) term is a
constant, and can be dropped from the maximization, leaving us with the “stage
return”

Q(h; m) = −2[�̂
′
S(h; m) − (m− h)d(�̂)]: (5)
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Omitting the c(Xi) terms, the overall maximized likelihood of the data set can
then be written

−2 max
{	j};{�j}

L(X ; �; 	) =−2 max
{	j}

[
max
{�j}

L(X ; �; 	)
]

=−2 max
{	j}

k∑
m=1

Q(	m−1; 	m):

Notice an important property of this likelihood – it is separable. The optimum
for splitting cases 1; : : : ; n into k segments consists conceptually of 3rst 3nding the
rightmost changepoint 	̂k . Once this is done, the remaining changepoints are found
from the fact that they constitute the optimum for splitting cases 1; : : : ; 	̂k into k − 1
segments. This separability is Bellman’s “principle of optimality” (see, for example,
Bellman and Dreyfus, 1962). Because of it, the likelihood may be maximized by
dynamic programming (DP).

Theorem. Write F(r; m) for −2 times the maximized log likelihood resulting from
6tting an r-segment model to the sequence X1;X2; : : : ;Xm (omitting constants and
the c(X) terms). Then; F(r; m) satis6es the recursion

F(1; m) = Q(0; m); (6)

F(r; m) = min
0¡h¡m

F(r − 1; h) + Q(h; m): (7)

Proof. The result follows immediately by contradiction.

The dynamic programming algorithm: The DP algorithm follows these equations
exactly. For each m=1; : : : ; n, calculate F(1; m)=Q(0; m): Then for each r=2; : : : ; k,
calculate F(r; m); m = 1; : : : ; n: We calculate each table entry F(r; m); using (7) to
3nd the h value minimizing the sum of the previously calculated F(r − 1; h) and
Q(h; m): Along with each value F(r; m), we keep a record of H (r; m); the h value
yielding the minimum.

Once these calculations have been done, the maximized log likelihood of the k
segment model 3tted to the full data set is − 1

2F(k; n):
The estimates 	̂j are given by the DP back-tracing operation 	̂k = n; and for r =

k − 1; k − 2; : : : ; 1; 	̂r = H (r + 1; 	̂r+1):
Finally, the within-segment �̂j are found as the values de3ned by the Q(	̂r−1; 	̂r):

2.2. Computational complexity of the algorithm

At 3rst glance, 3tting the change-point problem appears to be very hard for k; the
number of changepoints greater than 1 (see, for example, the comments by Chen
and Gupta (1997)). The DP formulation though has a computational complexity just
linear in k. To see this, we sketch a computation count. First, we can build up a
single once-and-for-all table of the Q(h; m); 0¡h¡m ≤ n: Since there are n(n−1)=2
of these, this is an O(n2) calculation, which yields the F(1; m) en passant.
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Then, for each subsequent r value, we need to compute the values of F(r; m); m=
1; : : : ; n. As 3nding F(r; m) involves a search over m − 1 values of F(r − 1; h) +
Q(h; m), this is an O(m) calculation, so the total computation of F(r; m); m=1; : : : ; n
is an O(

∑n
m=1 m)=O(n2) calculation. Since this needs to be done for each r = 2; : : : ; k,

the total computational complexity is O(kn2):
Note that the core computation that de3nes the computational complexity is very

simple, requiring some indexing, one add, and a compare. Contrary therefore to
the initial impression that the computation increases dramatically with the highly
nonlinear parameters 	r , computation actually increases only linearly, and with quite
a small multiplier. Fitting say 10 segments takes a little less than twice as long as
3tting 5. This means that 3tting large numbers of changepoints is not a computational
concern.

The quadratic complexity in n does mean that optimal segmentation of very long
sequences may be computationally burdensome. It is possible to reduce the com-
putational load for large samples substantially at the cost of introducing some ap-
proximation by evaluating the F(r; m) not for all m, but for a grid of m values.
Correspondingly, the search is only over m values on the grid. If, for example,
we restricted the grid (and the possible changepoints) to be every 3fth point of
the data sequence, this would cut the computation down by a factor of nearly 25.
This reduction occurs naturally in problems where there are blocks of data whose
order is tied. In this case, it does not make sense to break a block across two seg-
ments, and the only natural positions for the changepoints are between blocks. Under
these circumstances, the computation is reduced without introducing any approxi-
mation.

Note that in the process of 3nding the k segment 3t to the full series of data, we
obtain as a free by-product the optimal changepoints for all subsequences 1; : : : ; m for
m ≤ n, and all r ≤ k: This greatly facilitates exploring the 3tting of di/erent numbers
of segments – simply carry out the DP for the maximum number of segments in
the range of interest, and all optimal segmentations using fewer changepoints are
available for the miniscule e/ort of backtracing them with the H (r; m) table.

The formulation also makes it easy to explore 3tting di/erent starting sub-
sequences.

This dynamic programming algorithm is a development of Hawkins (1972), where
a similar formulation is used for the numeric analysis problem of producing piecewise
approximations of functions.

3. Particular applications

Changepoint in normal mean: We will start with the familiar example of scalar
normal data with constant variance, where the mean may change from one segment to
the next. This problem and the DP solution are discussed in more detail in Hawkins
and Merriam (1973, 1975). As this is the problem addressed by regression trees
(Breiman et al., 1984), it is particularly interesting to compare their implementation
with exact optimization.
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Turning the normal density into canonical exponential family form gives

f(x; �; �) =
1√
2��

e−(x−�)2=(2�2)

= exp

[
x�
�2

− x2

2�2
− � 2

2�2
− log(

√
2��)

]
:

The suMcient statistic for the mean � is the mean of the data. Write RX h;m =
S(h; m)=(m− h) for the mean of the subsequence Xh+1; : : : ; Xm, Then, the maximized
log likelihood for this subsequence is

Q(h; m) =
∑m

h+1 X 2
i

�2
− (m− h) RX

2
h;m

�2
+ 2(m− h) log(

√
2��)

=
m∑

h+1

(Xi − RX h;m)2=�2 + 2(m− h) log(
√

2��):

This is the within-segment sum of squared deviations from the mean, divided by
the nuisance constant �2, plus the nuisance constant 2(m− h)log(

√
2��): Note that,

when considering the log likelihood of the entire sequence, the 2(m− h) log(
√

2��)
terms will sum to the constant 2n log(

√
2��), regardless of the within-segment pa-

rameters, and so this term can be ignored. Similarly, the nuisance divisor �2; being
constant for the whole data set, can be omitted.

The change-point problem for normal means therefore comes down to a one-way
analysis of variance with the change points chosen to minimize the pooled within
segment sum of squared deviations, thereby maximizing the between-segment sum
of squared deviations. Writing W (h; m) for the sum of squared deviations of the
observations Xh+1; Xh+2; : : : ; Xm from their mean

W (h; m) =
m∑

i=h+1

(Xi − RX h;m)2;

we can 3nd the optimal changepoints from the DP

F(1; m) = W (1; m);

F(r; m) = min
0¡h¡m

[F(r − 1; h) + Q(h; m)]:

An algorithm mathematically equivalent to this was proposed independently by
Venter and Steel (1996). Rather than minimize the within-segment sum of squares,
they maximize the between-segment sum of squares. In computational terms, the
resulting algorithm is somewhat faster than ours since the update for calculating our
Q(h; m) requires 6 Soating-point operations while theirs requires only 4.

The Breiman et al. regression tree approach uses successive hierarchic binary splits.
The best single changepoint in the sequence is de3ned by

F(2; n) = min
0¡h¡n

[W (0; h) + W (h; n)]:

This leads to the same 	̂1 as the exact DP for this two-segment solution. Subse-
quently, the hierarchic binary approach 3xes this changepoint and then applies a
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binary search to the left half 1; : : : ; 	̂1 and the right half 	̂1 + 1; : : : ; n; adding the
splitpoint of whichever of these two subsequences gives the smaller pooled residual
sum of squares. The method continues in this way by attempting to split each of the
subsequences it uncovers.

The binary hierarchic method is very fast – it is only linear in n. It su/ers though
from the fact that the true optimal changepoints are not necessarily hierarchic, and
so it does not in general yield the correct optimum. The approach therefore is a
tradeo/ – a much faster computation that yields only an approximate solution to the
MLE. Since the exact computation using the DP is itself quite fast except for huge
data sets, we suggest this is a poor trade.

Changepoint in a gamma sequence: Consider next the gamma distribution with
known shape parameter �:

f(x; �; �) =
x�−1e−x=�

�(�)��
:

If we 3t this model to the sequence Xh+1; : : : ; Xm, the MLE of � is

�̂ = S(h; m)=(m− h) = RX h;m

and the maximized log likelihood gives

Q(h; m) = 2(m− h)[1 + log�(�) − � log RX h;m] − 2(�− 1)
m∑

h+1

logXi

= 2(m− h)� log RX h;m − 2(m− h)[1 + log�(�)] + 2(�− 1)
m∑

h+1

logXi:

When 3nding the likelihood of the entire sequence, all but the 3rst term in this
expression will sum to a constant, and so may be ignored. For optimization purposes
therefore it is suMcient to de3ne the stage return

Q(h; m) = 2(m− h)� log RX h;m:

Normal data with 6xed known mean and changing variance: If

Yi ∼ N (�; �j); 	j−1 ¡i ≤ 	j;

where � is known, and we de3ne Xi = (Yi − �)2, then the sequence Xi follows this
gamma change-point model with � = 0:5: The gamma formulation therefore also
addresses the case of normal data with a constant known mean but a variance that
changes between segments.

Normal data with change in mean and=or variance: Consider next the model

Xi ∼ N (�j; �2
j ); 	j−1 ¡i ≤ 	j

The log likelihood of the sequence Xh+1; : : : ; Xm for a generic �; � is
m∑

i=h+1

[
−(Xi − �)2

2�2
− log(

√
2��)

]
:

This is maximized by the estimators �̂ = RX h;m; �̂2 = W (h; m)=(m − h); and the
maximized likelihood gives

Q(h; m) = (m− h)[1 + log{W (h; m)=(m− h)}]:
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We may rede3ne Q(h; m) = (m− h) log[W (h; m)=(m− h)], since the omitted term
sums to the constant n over the entire sample. A further modest re3nement is a
“degrees of freedom” correction to �̂2; replacing the divisor (m− h) by (m− h− 1)
and leading to the expression

Q(h; m) = (m− h) log [W (h; m)=(m− h− 1)]:

This model is an example of a vector-valued parameter �= (�; �) with its vector-
valued suMcient statistic

∑
Xi;
∑

X 2
i .

The Poisson distribution: The formulation works equally well with discrete mem-
bers of the exponential family. For the Poisson distribution

f(x;  ) =
 xe− 

x!
;

the MLE of  over the data sequence Xh+1 : : : Xm is RX h;m, and the maximized log
likelihood gives

Q(h; m) = −2(m− h) RX h;m[log RX h;m − 1] −
m∑

h+1

logXi!

As the last term sums to a constant, there is no loss in de3ning

Q(h; m) = −2(m− h) RX h;m[log RX h;m − 1]:

The binomial distribution: For this discrete distribution,

f(x;  ) =
(
�
x

)
 x(1 −  )�−x;

where � is the number of trials and is assumed known, and the probability of success
is  :

For the sequence Xh+1; : : : ; Xm, the MLE of  is RX h;m=�; and substituting this in
the expression for the log likelihood gives

Q(h; m) = −2

[
m∑

h+1

(
�
Xi

)
+ Xi log

RX h;m

�
+ (�− Xi) log

(
1 −

RX h;m

�

)]
:

As the 3rst term is a constant when summed over the data, it may be omitted
from the de3nition of Q(h; m). The � divisor can also be simpli3ed out, leading to
the form

Q(h; m) = −2(m− h)[ RX h;m log RX h;m + (�− RX h;m) log (�− RX h;m)]:

Halpern (2000) gave a dynamic programming algorithm for the optimal segmen-
tation of Bernoulli sequences. This algorithm however was based, not on likelihood
maximization, but on maximizing the di/erences in proportions of “successes” be-
tween adjacent segments. This leads to the Venter–Steel algorithm.

3.1. Hierarchic binary splitting

We commented on the hierarchic binary segmentation in the context of regression
trees. The other members of the exponential family can also be analyzed using the
same approach. Chen and Gupta (1997), for example, use it for gamma sequences.
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A modest re3nement of hierarchic binary splitting is sketched in Hawkins (1976).
This consists of adding a merging step in which similar subsequences are re-merged.
While this does improve on the basic hierarchic splitting approach, it still does not
produce the optimal changepoints reliably.

Other applications of the dynamic programming formulation include discontinuous
piecewise regression models. These extend the “normal mean” formulation by allow-
ing the segment mean � to be a regression on a set of covariates (Hawkins, 1976).
This problem can be solved with a computational complexity of O(n2p2) + O(kn2).
The corresponding case of continuous piecewise regression models is set up as a DP
in Bellman and Roth (1969). Some multivariate segmentation problems (Hawkins
and Ten Krooden, 1979) can also be solved with the DP.

4. Formal testing for the number of segments

F(k; n) is the negative doubled maximized likelihood of the model 3tting k seg-
ments to the full sequence of data. It therefore gives rise to generalized likelihood
ratio tests:

To test the null hypothesis of a single segment versus the alternative of k segments,
the GLR statistic is F(1; n) − F(k; n):

To test the null hypothesis of at most (k − 1) segments against the alternative of
k, the GLR statistic is F(k − 1; n) − F(k; n):

On the face of it, the incremental change F(k − 1; n) − F(k; n) should follow an
asymptotic null chi-squared distribution with degrees of freedom 1 + dim(�) given
by parameter counting, and similarly for F(1; n) − F(k; n): However, despite being
GLR test statistics, neither of these quantities follows an asymptotic chi-squared
distribution. This is a consequence of the failure of the CramVer regularity conditions.
Little is known about the asymptotics of the tests in general – the only situation that
has been well studied is that of normal data with constant variance in the test of
whether a two segment model 3ts better than a single segment. For this problem, if
the nuisance parameter � is known, then the generalized likelihood ratio test for the
null hypothesis of a single segment against the alternative that there are two is

[F(1; n) − F(2; n)]=�2:

If the nuisance parameter � is unknown, then the generalized likelihood ratio test
statistic (with a degrees of freedom correction) is

(n− 2)[F(1; n) − F(2; n)]=F(2; n):

Far from having an asymptotic distribution as n increases, these statistics increase
without bound (see, for example, Hinkley (1970), Hawkins (1979), Irvine (1982),
Yao (1987) and the review by Bhattacharya (1994)). The failure of conventional
asymptotics in even this easiest case is an indication of the technical diMculty of
the more general situation.

In the absence of proper inferential bases for tests on the number of segments,
there are some intuitive methods that may be useful. One is the “scree” test of
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plotting F(k − 1; n) − F(k; n) against k and looking for an “elbow” in the plot. The
rationale for this test is that, while real segment boundaries are being 3tted there
will be large reductions in F(k; n), but once all real segment boundaries have been
found there will be a more-or-less-constant decrease in F(k; n) from 3tting additional
segments.

This heuristic does not rest on very solid foundations (in particular, it is not true
that the null distribution of F(k − 1; n) − F(k; n) varies smoothly with k), but may
suMce as a rough and ready practical tool. See also Venter and Steel (1996) and
Halpern (2000).

5. Examples

5.1. A regression-tree-type example

We start with a data set showing a non-linear relationship between a predictor and
a dependent variable. In the absence of a parametric model, this data set might be
subjected to analysis with a regression tree. The data set is shown as Fig. 1a, and the
optimal segmentation into 2; 3; : : : ; 6 segments is Fig. 1b. Table 1 shows the optimal
segment boundaries, the pooled residual sum of squares F(r; n) and the change in
residual sum of squares as we go from one value of r to the next. Note that the
optimal changepoints are not hierarchic. In particular, the 3rst changepoint found,
136, does not re-appear in any of the subsequent 3ts.

The 5-segment optimal 3t seems to capture most of the structure in the data set,
with a residual sum of squares of 137.6. The 5-segment 3t returned by the hierarchic
binary segmentation approach has a much larger residual sum of squares, 175.

The binary hierarchic approach therefore does not do very well here. It does almost
catch up with the optimal 3t at 10 segments, by which time the latter is over3tting.
This illustrates the problem with hierarchic binary splitting; while it will uncover
the broad structure in the end, it may do so using some unnecessary changepoints.
These violate parsimony and can cloud interpretation.

We could formulate the changing-mean model as a non-linear regression

Xi = �0 +
k∑

r=1

�rI [i¿ 	(r)];

where I is the usual indicator function, and try 3tting using general-purpose non-linear
regression software. As it stands the lack of di/erentiability with respect to the 	
makes this formulation unworkable. We can however “smooth the corners” by ap-
proximating the staircase model with

Xi = �0 +
k∑

r=1

�rH [i − 	(r)];

where H (·) is any convenient cumulative distribution function centered on zero – for
example, that of the Cauchy. This non-linear regression formulation can be made to
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Fig. 1. (a) A general regression data set. (b) Optimal k-way splits on mean.

converge, but usually to poor local optima. This non-linear regression formula-
tion is far inferior to even the hierarchic binary segmentation approach which at
least is guaranteed to work for two segments even if for no more than
two.

5.2. Stock market data

We now illustrate the analysis with three real data sets. The 3rst data set (taken
from Hsu, 1979) is the weekly log price relative (LPR) of the Dow Jones Industrial
Average for the period July 1, 1971 to August 2, 1974. The series is plotted in
Fig. 2a. A baseline model of this sequence would be that Xi, the LPR in week
i,follows a N (�; �2) distribution. The value of � should be practically zero un-
der modest “eMcient market” assumptions. However, there can be doubts about the
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Table 1
Changepoints for regression tree data

k F(k; n) Change 	1 	2 	3 	4 	5

2 749.22 4099.43 136
3 315.77 433.45 101 157
4 202.45 113.32 101 155 197
5 137.64 64.81 87 126 157 215
6 110.73 26.91 72 101 126 157 215

constancy of � – visually the sequence seems to be more variable in the later periods
than the earlier.

To check this possibility, we 3tted the change-point model for a constant � = 0,
but with � changing from one segment to another. The F(k; n) values for k values
from 2 to 6 and the corresponding change points are given in Table 2a and plotted
in Fig. 2b along with the changes F(r−1; n)−F(r; n), the “explained deviance” due
to going from r − 1 to r segments.

Once again, we see that the optimal change points are not hierarchical. The best
single changepoint, 89, is not chosen as one of the two best changepoints and this
lack of hierarchy continues in the table. Visually, the change [F(k − 1; n) − F(k; n)]
seems to stabilize around the value 5.5 (a pattern that is continued in 3tting up to
10 segments), suggesting that the data set has no more than four “real” segments.

While a boundary at point 89 is visually reasonable from Fig. 2a, the boundaries
at 28 and 31 seem to do no more than isolate a trio of LPR values that are unusually
close to zero.

5.3. A binomial formulation

The log of the variance of short subsequences (as used in the likelihood function)
may be thought to pay unnaturally close attention to fortuitously small LPR’s in a few
successive days. A di/erent formulation that looks instead at the larger di/erences
(and illustrates a di/erent statistical distribution) may be interesting. We created a
Bernoulli variable, set to 1 if the absolute value of the LPR is above the median
absolute LPR of 0.0133, and 0 if it is below 0.0133. This transformation may be
thought of as a non-parametric way to isolating subsequences of higher than average
variability.

This random variable is binomially distributed with �=1: Di/ering variances in the
original data would translate into di/ering binomial probabilities in these ‘yes=no’
variables. Segmenting this sequence using the DP gives the split points shown in
Fig. 2c, and tabulated in Table 2b.

The F(k; n) values here more clearly suggests three segments, with boundaries at
89 and 133. Visually, this seems reasonable, with the segment to the right of 133
appearing to have fewer extreme LPR values than does the segment from 89 to 133.
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Fig. 2. (a) Log price relative of DJIA. (b) Cutpoints by variance. (c) Cutpoints by binomial splitting.

5.4. Aircraft arrivals

A second sequence by Hsu is of the times between arrivals of airplanes over
Newark NJ for an 8-h period in April 1969. Under a Poisson process model, these
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Table 2
Change points (a) for Dow Jones variance

k F(k; n) Change 	1 	2 	3 	4 	5

(a) for Dow Jones variance
2 −1254:69 27.72 89
3 −1260:83 6.14 83 85
4 −1272:06 11.22 28 31 89
5 −1277:53 5.48 28 31 83 85
6 −1283:00 5.46 28 31 35 39 89

(b) for binomial Dow Jones scale measure
2 198.84 24.30 89
3 187.62 11.21 89 133
4 185.10 2.51 86 89 133
5 180.30 4.80 89 133 156 160
6 177.66 2.63 89 136 145 156 160

inter-arrival times should follow an exponential distribution. TraMc intensities chang-
ing by time of day, however, would lead to shifts in the exponential parameter.

The data sequence is shown in Fig. 3a. No changepoints are visually obvious,
though the values seem higher on the right than on the left. Modeling the sequence
by the gamma distribution with � = 1 (the exponential distribution) gives the 3ts
plotted in Fig. 3b and tabulated in Table 3. The apparent oscillations in the size of
the changes in F(k; n) and their similar size suggest that there is not much structure
in this sequence.

Following the approach of Worsley (1986), we 3nd that the upper 5% point of
the likelihood ratio statistic for a binary split is 4.43. This means that the initial
binary split is not signi3cant. The signi3cance or otherwise of subsequent splits is
not clear.

5.5. A Poisson formulation

Data modeled by a Poisson process can be tracked using either the exponential
inter-arrival times, or the Poisson-distributed numbers of events within non-overlapp-
ing time windows. Poisson monitoring of the number of arrivals in successive time
windows can be more e/ective than monitoring the inter-arrival times for the detec-
tion of sharp increases in mean inter-arrival time. The inter-arrival time data only
produce an observation after there has been an arrival. If arrivals slow down or
stop, there will be few or no inter-arrival data to which to react, but the Poisson
monitor will produce a long stream of zero counts and detect the decrease in arrival
rate.

To explore this alternative way of looking at the data, we transformed the data
into the number of events in successive intervals of width 155 (the mean inter-arrival
time) and analyzed this sequence of counts per standard interval using the Poisson
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Fig. 3. (a) Aircraft inter-arrival times. (b) Cutpoints by gamma.

Table 3
Change points for aircraft inter-arrival times

k F(k; n) Change 	1 	2 	3 	4 	5

2 1833.33 3.36 181
3 1824.25 9.09 175 179
4 1821.09 3.16 172 175 179
5 1812.94 8.15 168 172 175 179
6 1810.15 2.79 28 168 172 175 179
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model. Segmenting the sequence gives

k F(k; n) Change 	̂1 	̂2 	̂3 	̂4 	̂5

2 5.95 5.95 3
3 11.01 5.06 178 179
4 16.97 5.94 3 178 179
5 21.60 4.63 3 106 108 113
6 27.97 6.37 3 108 113 178 179

This table is strikingly featureless. The explained deviance is steady across the
whole range of values, and visually looks small. It appears that, whether we look at
this data set in terms of the inter-arrival times or the number of events per 3xed time
interval, there is no segment structure in it and therefore no detectable non-constancy
in the aircraft arrival process.

5.6. Gold mine sampling quality control

A third real data set is taken from mine quality control. Samplers in gold mines
extract samples of the face at regular spacings and submit them for chemical as-
say for their gold content. As a quality check, supervisors cut out fresh samples at
some of the locations already sampled. This gives rise to pairs of samples and of
gold contents – one by the original sampler and one by the supervisor. The log of
the ratio of these two gold contents has an approximately normal distribution. This
distribution should have a zero mean (else the sampler is biased) and a small vari-
ance (else the sampler is erratic). Fig. 4a (taken from Rowland and Sichel, 1961)
shows a sequence of such ratios for a junior sampler. It is of interest to see whether
there have been changes in either mean or variance over the sequence, as either of
these would have important implications for the valuation of the mine. We there-
fore apply the segmentation procedure for normal data shifting in mean, variance, or
both.

The split points are shown in Fig. 4b, and the numeric results in Table 4. The GLR
test statistics for adding the second and subsequent changepoints have values around
15. Against this benchmark, the single change point at time 42 seems statistically as
well as visually real. Looking at the summary statistics of the log ratio in the two
segments we get

Segment 1 – 42 mean = 0:0698; sd = 0:8294,
Segment 43 – 157, mean = −0:0177, sd = 0:3994.

It appears that the di/erence is mainly in variance (initially poor but improving
consistency) and not of a non-zero mean, so there is no cause for concern about
bias. That the later variance is smaller than the earlier suggests some learning by the
sampler, and consequent quality improvement. This halving of the standard deviation
corresponds to a dramatic improvement in the quality of gold estimates over his early
work.
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Fig. 4. Gold mine quality control data. (b) Normal mean and=or variance.

Table 4
Change points for gold mine quality control data

k F(k; n) Change 	1 	2 	3 	4 	5

2 −217:55 39.77 42
3 −231:71 14.16 75 78
4 −249:03 17.32 42 75 78
5 −263:71 14.67 42 75 78 79
6 −277:88 14.16 37 38 75 78 79
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6. Conclusion

The change-point model for the general exponential family can be thought of as a
generalized non-linear model. As such it would seem to be computationally intensive
in the number of non-linear parameters – the changepoints. On the contrary however,
the model can be 3tted in a time linear in the number of change-points using a
dynamic programming formulation making it quite a small task with moderate size
data sets.

We have discussed the single-parameter exponential family in some detail. The
approach applies equally well though to discontinuous segmented regression models,
and some multivariate models. It can also be applied to distributions outside the expo-
nential family, but with the complication that the explicit estimates of within-segment
parameters are replaced with much slower iterative calculations of maximum like-
lihood estimates.

A by-product of 3tting k segments to n data points is the full set of optimal
segmentations using k or fewer segments to points 1 through m for 1¡m¡n:
We have not explored this use of the algorithm, but it has obvious implications. For
example, in quality improvement, by ordering a data series from most to least recent,
it can be used to help identify the duration of the current stable conditions.

The dynamic programming algorithm provides an alternative to the hierarchic bi-
nary splitting that dominates current work on multiple change points. It gives an
exact optimum with a generally modest amount of computing and therefore seems
preferable except for data sets so large that computation starts to be a concern.

Acknowledgements

The author is grateful to the referees for several suggestions for improving the
paper.

References

Bellman, R.E., Dreyfus, S.E., 1962. Applied Dynamic Programming. Princeton University Press,
Princeton.

Bellman, R., Roth, R., 1969. Curve 3tting by segmented straight lines. J. Amer. Statist. Assoc. 64,
1079–1084.

Bhattacharya, P.K., 1994. Some aspects of change-point analysis. In: Carlstein, E., Muller, H.G.,
Siegmund, D. (Eds.), Change-Point Problems. IMS Monograph, Institute for Mathematical Statistics,
Hayward, pp. 28–56.

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classi3cation and Regression Trees.
Wadsworth, Belmont, CA.

Chen, J., Gupta, A.K., 1997. Testing and locating variance change-points with applications to stock
prices. J. Amer. Statist. Assoc. 92, 739–747.

Halpern, A.L., 2000. Multiple-changepoint testing for an alternating segments model of a binary
sequence. Biometrics 56, 903–908.

Hawkins, D.M., Ten Krooden, J.A., 1979. Zonation of sequences of heteroscedastic multivariate data.
Comput. Geosci. 5, 189–194.



D.M. Hawkins / Computational Statistics & Data Analysis 37 (2001) 323–341 341

Hawkins, D.M., 1972. On the choice of segments in piecewise approximation. J. Inst. Math. Appl. 9,
250–256.

Hawkins, D.M., 1976. Point estimation of the parameters of a piecewise regression model. Appl. Statist.
25, 51–57.

Hawkins, D.M., 1979. Testing a sequence of observations for a shift in location. J. Amer. Statist.
Assoc. 72, 180–186.

Hawkins, D.M., Merriam, D.F., 1973. Optimal zonation of digitized sequential data. Math. Geo. 5,
389–396.

Hawkins, D.M., Merriam, D.F., 1975. Segmentation of discrete sequences of geologic data. In: Whitten,
E.H.T. (Ed.), Quantitative Studies in the Geological Sciences. Geological Society of America,
Washington, DC, pp. 311–316.

Hinkley, D.V., 1970. Inference about the change-point in a sequence of random variables. Biometrika
57, 1–17.

Hsu, D.A., 1979. Detecting shifts of parameter in gamma sequences with applications to stock price
and air traMc Sow analyses. J. Amer. Statist. Assoc. 74, 31–40.

Irvine, J.M., 1982. Changes in regime in regression models. Ph.D. Thesis, Yale University.
Rowland, R.St.J., Sichel, H.S., 1961. Statistical quality control of routine underground sampling.

J. South African Inst. Mining Metall. 60, 251–284.
Venter, J.H., Steel, S.J., 1996. Finding multiple abrupt change points. Comput. Statist. Data Anal. 22,

481–504.
Worsley, K.J., 1986. Con3dence regions and tests for a change-point in a sequence of exponential

family random variables. Biometrika 73, 91–104.
Yao, Y.C., 1987. Approximating the distribution of the maximum likelihood estimate of the

change-point in a sequence of independent random variables. Ann. Statist. 15, 1321–1328.


